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Abstract

It is important to predict the dynamic characteristics of a piezoelectrically actuated beam very accurately for
successful vibration controls. It has been well recognized that spectral elements provide very accurate solutions for

such simple structures as beams. Thus, this paper introduces a spectral element method (SEM) and a spectral-
element based modal analysis method (MAM) for elastic-piezoelectric two-layer beams. The axial-bending coupled
equations of motion are derived ®rst by using Hamilton's principle and the spectral element matrix is formulated

from the spectrally formulated exact eigenfunctions of the coupled governing equations. For MAM, the
orthogonality of the eigenfunctions (i.e. natural modes) is proved. Present solution approaches are veri®ed by
comparing their results with the conventional FEM results. It is shown that the results by MAM and FEM

converge to those by SEM as the number of superposed natural modes and the number of discretized ®nite elements
are increased, respectively. It is also shown that, as the thickness of piezoelectric layer vanishes, the axial-bending
coupled problems are decoupled to yield the solutions for two independent problems: the pure axial-motion problem
and the pure bending-motion problem. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials have received considerable attention due to their potential applications to the
active controls of structural vibration and noise. The converse piezoelectric e�ect is used for the
actuator design while the direct piezoelectric e�ect is used for the sensor design. In order to use the
piezoelectric e�ects, the piezoelectric materials are usually bonded on the surface of a structure. Thus,
the structure becomes a multi-layer laminate structure. Though there should be diverse types of multi-
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layer structure, the discussion in this paper will be con®ned to the two-layer beam that consists of an
elastic base layer and a piezoelectric layer.

It is important to use a satisfactory structure model together with a proper solution method to obtain
reliable dynamic characteristics of a multi-layer beam. Historically, there have been developed many
analytical structure models for the elastic±elastic two-layer beams (Hess, 1969), the elastic±viscoelastic
two-layer beams (Oberst, 1952), the elastic±viscoelastic±elastic three-layer beams (Kerwin, 1959; Mead
and Markus, 1969; Yan and Dowell, 1972; Rao and Nakra, 1974; Mead, 1982; Bai and Sun, 1993;
Nayfeh and Solocum 1997), the elastic±piezoelectric two-layer beams (Crawley and de Luis, 1987; Shi
and Atluri, 1990), and for the elastic±viscoelastic±piezoelastic three-layer beams (Baz, 1993; Liao, 1997).
Despite of numerous analytical structure models for multi-layered beams, some models are
inappropriate for practical applications. This is in part due to the strict assumptions and in part due to
the mathematical complexity used for analytical models. Thus, there also have been developed many
®nite element models (Robbins and Reddy, 1991; Lesieutre and Lee, 1996). The ®nite element approach
may provide models that are more realistic by removing some strict assumptions that are inevitable for
analytical models. However, as a drawback of the ®nite element method (FEM), extremely precise ®nite
elements discretization is required to obtain reliable dynamic solutions, especially at high frequency.
Furthermore, the modal analysis commonly used in conjunction with FEM is limited to the frequency
regimes where the relative spacing of natural frequencies remains large compared to the relative
parameter uncertainty. Thus, alternatives to FEM have been considered by many researchers.

In the literature, Doyle (1988) used the spectrally formulated ®nite element, called as the spectral
element, to study the wave propagation in structures. In contrast to the conventional ®nite element, the
spectral element treats the mass distribution within a structural element exactly by using exact shape
functions and thus it provides accurate dynamic characteristics of a structure. The spectral element
matrix is the same as the exact dynamic sti�ness matrix in nature (Leung, 1993; Banerjee, 1997). In
spectral element method (SEM), a structure can be discretized into many spectral elements and the
spectral elements can be assembled in a completely analogous way to that used for FEM. The signi®cant
di�erence from FEM is that FFT and inverse FFT algorithms are utilized in SEM. This procedure is
known to provide very accurate solutions even at high frequency (Lee and Lee, 1997). Despite the
outstanding features of SEM, there have been very few applications to multi-layer structures. This is
probably due to the di�culty in obtaining the exact shape functions for such complex structures. In the
literature, Leung and Zhou (1996) derived the dynamic sti�ness matrix for the laminated composite
plate based on an e�ective single-layer plate model.

The dynamics of a multi-layer structure is usually represented by a set of coupled equations of
motion. Diverse coupled structural dynamics problems have been studied by many researchers
(Dokumaci, 1987; Bishop et al., 1989; Banerjee, 1989; Banerjee et al., 1996). However, probably due to
the mathematical complexity, the modal analysis method (MAM) has not been well applied to such
coupled problems in the literature. There are several types of structural coupling. For instance, there are
the sti�ness coupling of Timoshenko's beam model, the inertia coupling of the bending-torsion coupled
vibration problem considered by Dokumaci (1987), and the sti�ness and inertia coupling of the multi-
layer beams considered in this paper. In the case of Timoshenko's beam problem, the original two
coupled dynamic equations can be combined to reduce a single higher order equation of motion so that
the modal analysis approach can be readily applied to the problem. However, for the other two
coupling problems, the situation is not so simple so a special e�ort is required to conduct the modal
analysis.

It may be important to predict the dynamic characteristics of a piezoelectrically actuated beam
accurately for successful vibration and noise control applications. As discussed just before, it has been
well known that spectral elements provide very accurate solutions for such simple structures as beams.
Thus, the purpose of this paper is to introduce a SEM and a spectral-element based MAM for the
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elastic±piezoelectric two-layer beam in which the piezoelectric layer is used an actuator. Thus, in this
paper, the spectral element is ®rst formulated from the axial-bending coupled equations of motion for
an elastic±piezoelectric two-layer beam. Then, a modal analysis approach for the present axial-bending
coupled vibration problem is introduced by deriving the orthogonality property of the natural modes.
Finally, the accuracy of the solutions obtained by SEM and MAM is veri®ed.

2. Formulation of the coupled equations of motion

The geometry and deformation of an elastic-piezoelectric two-layer beam of length L is shown in
Fig. 1. The structural dynamic equations of motion are derived based on the following assumptions:

1. The shear deformations in both layers are negligible.
2. The rotary inertia is negligible.
3. The transverse displacement w(x, t ) is same for both layers.
4. There is perfect continuity, but no slip, at the interface.
5. Liner theories of elasticity and piezoelectricity are applicable.
6. The density and thickness are uniform over the beam.
7. The applied voltage is uniform along the beam.

In Fig. 1, ub and up are the axial displacements of the neutral axes of the base beam and the
piezoelectric layer, respectively. For perfect bonding conditions, the geometry of Fig. 1 provides the
kinematics relation as

up � ub ÿ hb � hp

2
y �1�

where hb and hp are the thickness of base beam and the thickness of piezoelectric layer, respectively, and
y=@w/@x is the rotational angle of the base beam. As used in Eq. (1), the subscripts b and p are used in
the following formulations to represent the quantities for the base beam layer and piezoelectric layer,
respectively.

The constitutive equation of the piezoelectric materials under uni-axial loading can be written as�
s
E

�
�
�
C D

11 ÿh31
ÿh31 bs

33

��
E
D

�
�2�

where s and E are the mechanical stress and strain in the x-direction, respectively. D is the electrical
displacement (charge/area in the beam vertical direction) and E is the electrical ®eld (voltage/length

Fig. 1. Geometry and deformation of the elastic-piezoelectric two-layer beam.
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along the vertical direction). CD
11 is the elastic sti�ness, b S

33 is the dielectric constant, and h31 is the
piezoelectric constant.

Using the above constitutive relation and assuming D is constant through the thickness of thin
piezoelectric layer, the strain energy of the two-layer beam is derived after integrating over z and
assuming E=zw0 as

V � 1

2

�L

0

�EbAbu
0 2

b � EbIbW
00 2 � C D

11Apu
0 2

p � C D
11Ipw

00 2 ÿ 2Aph31Du 0p � Apb
S
33D

2� dx �3�

where E, A, I and r (for each layer) are the Young's modulus, the cross-sectional area, the area moment
of inertia about the neutral axis, and the mass density, respectively. The kinetic energy of the two-layer
beam is also derived as

T �1
2

�L

0

frbAb� _u2b � _w2� � rpAp� _u2p � _w2�g dx: �4�

The virtual work is given by

dW �
�L

0

bV�t�dD dx� �Ndub j0L � �Mdy j0L � �Qdw j0L �5�

In the preceding equations, the prime ( ') and the dot ( � ) indicate the partial derivatives with respect to
the coordinate x and the time t, respectively. V(t ) is the applied voltage.

The axial displacement of piezoelectric layer up can be eliminated from two energy expressions, Eqs.
(3) and (4), by using Eq. (1). Applying these energies into Hamilton's principle yields the axial-bending
coupled equations of motion as

EIw 0000 � rA �w � ÿa �u 0b � bu 000b � g �w 00

EAu 00b ÿ rA �ub � ÿa �w 0 � bw 000 �6�

where

rA � rbAb � rpAp, EA � EbAb � EpAp, EI � EbIb � C D
11Ip � 1

4
EpAph

2

a � 1

2
rpAph, b � 1

2
EpAph, g � 1

4
rpAph

2

h � hb � hp, Ep � C D
11 ÿ

h231
bS
33

: �7�

In Eq. (6), a and b are the parameters that govern the axial-bending coupling. Without the piezoelectric
constraining layer, the parameters a, b, and g will vanish to result in two independent de-coupled
equations of motion for the pure-bending motion and the pure axial-motion of the base beam.

The Hamilton principle also provides the boundary conditions as

N � �N or ub � �ub
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M � �M or y � �y

Q � �Q or w � �w: �8�
The over-bar in Eq. (8) indicates the quantities speci®ed at boundaries. N, M, and Q are the resultant
axial force, resultant bending moment, and the resultant transverse shear force Q, respectively. They are
related to the mechanical and piezoelectric variables as

N � EAu 0b ÿ bw 00 ÿ bd31EpV�t�

M � EIw 00 ÿ bu 0b �
1

2
hbd31EpV�t�

Q � ÿEIw 000 ÿ a �ub � bu 00b ÿ g �w 0 �9�
where d31 is the piezoelectric constant de®ned by d31=h31/(Epb

S
33).

The governing equations of motion for the elastic±elastic two-layer beam can be readily reduced from
the above formulations by simply eliminating all piezoelectric terms. A similar formulation was given by
Liao (1997), but his work was for the cantilevered beam that is partially laminated with a piezoelectric
patch.

3. Spectral element analysis

The spectral element will be formulated from the general solutions of Eq. (6). Assume that the
dynamic responses of beam and the applied voltage have the spectral representations as

w�x, t� �
XN
n

Ŵ�x, on�eiont

ub�x, t� �
XN
n

Û�x, on�eiont

V�t� �
XN
n

V̂�on�eiont �10�

where on is the frequency and WÃ , UÃ and VÃ are the spectral components of w, ub, and V, respectively. N
is the total number of spectral components summed in Eq. (10). Once the Nyquist frequency oNF (i.e.
the maximum frequency range to be considered in the spectral analysis) is chosen, N is determined by
oNF/Do. Frequency increment Do is directly related to the resolution in frequency domain. For
shorthand, the summation and subscripts used in Eq. (10) will be omitted in the following.

Substituting Eq. (10) into Eq. (6) and canceling the common time factor may yield coupled two
ordinary di�erential equations for WÃ and UÃ as

EIŴ
0000 ÿ o2rAŴ � o2�ÿgŴ 00 � aÛ

0 � � bÛ
000
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EAÛ
00 � o2rAÛ � o2aŴ

0 � bŴ
0000
: �11�

The general solutions for WÃ and UÃ can be obtained in the forms of

Ŵ�x� �
X3
i�1
�Aie

kix=L � A2ie
ÿkix=L� � �N�x��fAg

Û�x� �
X3
i�1
�Bie

kix=L � B2ie
ÿkix=L� � �N�x��fBg �12�

where

�N�x�� � � ek1x=L ek2x=L ek3x=L eÿk1x=L eÿk2x=L eÿk3x=L�

fAg � fA1 A2 A3 A4 A5 A6g

fBg � fB1 B2 B3 B4 B5 B6g: �13�
In Eq. (12), ki (i=1, 2, 3) are the wave numbers to be computed from

�b2 ÿ EAEI �k6 � o2L2�2abÿ rAEIÿ gEA�k4 � o2L4fa2o4 � rA�EAÿ go2�gk2 � o4L6rA2

� 0: �14�

Eq. (14) is the dispersion relation that gives the relation between wave number and frequency. At a
speci®ed frequency o, Eq. (14) gives six values of wave number k, but they appear as2pairs.

The relations between the coe�cients Ai and Bi of Eq. (12) can be obtained by substituting Eq. (12)
into Eq. (11a) as

Bi � �ÿ1�i
(
L4rAo2 � L2go2k2i � EIk4i

Lki�L2ao2 � bk2i �

)
Ai � li�o�Ai �i � 1, 2, . . . 6� �15�

or simply

fBg � �diagonal�li ��fAg �16�
Substitute Eq. (16) into Eq. (12b) to express UÃ as the function of Ai. The coe�cients Ai can be
determined by applying Eq. (12) into the boundary conditions of Eq. (8). The coe�cients Bi can be then
computed from Eq. (16). The coupling functions li (x ) in Eq. (15) indicate the existence of the coupling
between the axial-motion and the bending-motion of base beam. In®nite or zero values of li (x ) simply
imply the decoupling. When the piezoelectric layer thickness vanishes, it can be shown that the
coe�cients A5, A6, B1, B2, B3, and B4 indeed vanish to result in decoupled two problems: the pure
bending-motion problem and the pure axial-motion problem.

The spectral nodal DOF de®ned in Fig. 2 can be expressed in terms of Ai, by using Eq. (12), as

fxg � �Q�fAg �17�
where x is the spectral nodal DOF vector de®ned by
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fxg � fÛ1 Ŵ1 Ŷ1 Û2 Ŵ2 Ŷ2gT �18�
Using Eqs. (16) and (17), the spectral displacement components of Eq. (12) can be represented in terms
of the spectral nodal DOF vector as

Ŵ�x� � �N�x���Q�ÿ1fxg

Û�x� � �N�x���diagonal�li ���Q�ÿ1fxg: �19�
Substituting Eq. (12) into the spectral representations of the force-displacement relations of Eq. (9), the
spectral components of the nodal forces and moments de®ned in Fig. 2 can be expressed in terms of Ai

as

ffg � �P�fAg �20�
where

ffg � fN̂1 ÿ N̂
e

Q̂1 M̂1 � M̂
e

N̂2 � N̂
e

2 Q̂2 M̂2 ÿ M̂
egT �21�

In Eq. (21), NÃ i, QÃ i, MÃ i and are the nodal spectral components of axial force, the nodal transverse shear
force and nodal bending moment de®ned in Fig. 2, respectively. Similarly, NÃ e and MÃ e are the nodal
spectral components of piezoelectrically induced axial force and bending moment de®ned by

N̂
e � bd31EpV̂, M̂

e � 1

2
hbd31EpV̂: �22�

Eliminating the coe�cients Ai from Eqs. (17) and (20) yields the spectral nodal force-nodal displacement
relation as

ffg � �P��Q�ÿ1fxg� � �k�fxg �23�
where k is the frequency-dependent spectral element matrix. Computer implementation to obtain k can
be readily accomplished numerically. Explicit expression for k has become possible due to recent
advance in symbolic computing (Fitch, 1985). Since the explicit expression for k is too lengthy, instead,
the explicit expressions for P and Q are listed herein as

�P� � 1

L3

26666664
p11 p11 p12 p12 p13 p13
p21 ÿp21 p22 ÿp22 p23 ÿp23
p31 p31 p32 p32 p33 p33
ÿek1p11 ÿeÿk1p11 ÿek2p12 ÿeÿk2p12 ÿek3p13 ÿeÿk3p13
ÿek1p21 ÿeÿk1p21 ÿek2p22 ÿeÿk2p22 ÿek3p23 ÿeÿk3p23
ÿek1p31 ÿeÿk1p31 ÿek2p32 ÿeÿk2p32 ÿek3p33 ÿeÿk3p33

37777775

Fig. 2. Sign convention for the spectral element.
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�Q� �

26666664
l1 ÿl1 l2 ÿl2 l3 ÿl3
1 1 1 1 1 1
k1=L ÿk1=L k2=L ÿk2=L k3=L ÿk3=L
ek1l1 ÿeÿk1l1 ek2l2 ÿeÿk2l2 ek3l3 ÿeÿk3l3
ek1 eÿk1 ek2 eÿk2 ek3 eÿk3
�ek1k1�=L ÿ�eÿk1k1�=L �ek2k2�=L ÿ�eÿk2k2�=L �ek3k3�=L ÿ�eÿk3k3�=L

37777775 �24�

where

p1i � kiL�bki ÿ EALli �

p2i � L2o2gki � EIk3i ÿ L3o2ali ÿ Lbk2i li

p3i � kiL�Lbli ÿ EIki � �25�
The spectral elements can be assembled in a completely analogous way to that used for FEM. After
applying the boundary conditions to the assembled result, the global system equation is reduced in the
form as

�K�fXg � fFg �26�
where K is the global spectral matrix (or global dynamic sti�ness matrix), X is the spectral DOF vector,
and F is the spectral force vector. Eq. (26) can be solved for X and the results are applied into Eq. (19)
to obtain the spectral displacement components. The inverse FFT algorithm is then used to obtain the
time domain responses from the spectral displacement components.

4. Modal analysis

For modal analysis, the eigensolutions (i.e. natural frequencies and natural modes) should be obtained
in prior. The eigensolutions can be obtained by the following steps.

1. Natural frequencies on (n = 1, 2, . . . , 1) are computed numerically from the roots of the
determinant of K, the global spectral matrix de®ned in Eq. (26).

2. At each natural frequency, six wave numbers2ki (i=1, 2, 3) are computed from Eq. (14).
3. Coe�cients Ai and Bi are then determined from Eq. (15) so as to satisfy boundary conditions.
4. Finally, the eigenfunctions (i.e. exact natural modes) are computed from Eq. (12) by using the wave

numbers ki and the coe�cients Ai and Bi, all computed in the preceding steps.

By superposing the natural modes, the dynamic responses can now be obtained from

w�x, t� �
X1
n

Wn�x�qn�t�

ub�x, t� �
X1
n

Un�x�qn�t� �27�

where Wn and Un are the n-th natural modes of the bending motion and the axial motion, respectively,
and qn (t ) are the corresponding modal coordinates.
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The orthogonality of normal modes is very useful for the modal analysis. Thus, the orthogonality
property for the present axial-bending coupled problem will be derived in the following.

Since the eigensolutions are the general solutions of Eq. (11), the n-th eigensolutions should satisfy the
following two equations:

EIW
0000
n ÿ o2

nrAWn � o2
n�ÿgW 00

n � aU 0n� � bU 000n

EAU 00n � o2
nrAUn � o2

naW
0
n � bW 000

n : �28�
By using Eq. (9) (with zero applied voltage), Eq. (28) can be rewritten as

o2
n�rAWn � aU 0n� �M 00

n � o2
ngW

00
n �29a�

o2
n�rAUn ÿ aW 0

n� � ÿN 0n �29b�
where Nn and Mn represent the resultant axial force and bending moment, respectively, at the n-th
natural mode.

Multiply Eq. (29a) by Wm and Eq. (29b) by Um, integrate the results from x= 0 to x=L, and ®nally
sum two integrations to obtain

o2
n

�L

0

�rAUnUm � rAWnWm � aU 0nWm ÿ aW 0
nUm� dx � ÿ

�L

0

N 0nUm dx�
�L

0

M 00
nWm

dx� o2
n

�L
0

gW 00
nWm dx:

�30�

Similarly, for the m-th eigensolutions, one may obtain

o2
m

�L

0

�rAUnUm � rAWnWm � aU 0mWn ÿ aW 0
mUn� dx � ÿ

�L

0

N 0mUn dx�
�L

0

M 00
mWn

dx� o2
m

�L
0

gW 00
mWn dx:

�31�

Subtracting Eq. (30) from Eq. (31), integrating by parts, applying the boundary conditions, and
accomplishing a further manipulation may yield the orthogonality property as�L

0

frA�UnUm �WnWm� ÿ a�UnW
0
m �UmW

0
n� � gW 0

nW
0
mg dx � mndmn �32�

where mn is the modal mass and it is computed from

mn �
�L

0

frA�U 2
n �W 2

n� ÿ a�UnW
0
n �UnW

0
n� � gW

02
n g dx: �33�

Once the orthogonality property of Eq. (32) is derived, the forced vibration responses of the present
axial-bending coupled problem can be readily obtained by using the modal analysis method.

The equations of motion for the forced vibration are given by

EIw 0000 � rA �w� a �u 0b ÿ bu 000b ÿ g �w 00 � p�x, t�
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EAu 00b ÿ rA �ub � a �w 0 ÿ bw 0000 � ÿt�x, t� �34�
where p(x, t ) and t(x, t ) represent the external forces acting along the beam transversely and
longitudinally, respectively. Substituting Eq. (27) into Eq. (34) and applying the orthogonality property
of Eq. (32), decoupled modal equations can be derived as

�qn�t� � o2
nqn�t� �

fn
mn

�35�

where fn is the nodal force de®ned by

fn �
�L

0

ft�x, t�Un � p�x, t�Wng dx: �36�

5. Numerical examples

The validity and accuracy of the spectral element and the modal analysis approach introduced for the
axial-bending coupled elastic-piezoelectric two-layer beam problems are veri®ed in this section by
comparing with the solutions obtained by ®nite element analysis and experiment. For the ®nite element
analysis, a ®nite element model is also formulated from the present axial-bending coupled equations of
motion by using the same kinematics (e.g. nodal displacements and shape functions) and formulation
procedure as introduced by Liao (1997).

As illustrative examples, two cantilevered laminate beams are considered. The base beams used for
both laminate beams are identical in geometry and material: length L = 0.2616 m, thickness
hb=0.00286 m, Young's modulus Eb=71 GPa, and mass density rb=2700 kg/m3. The base beam of the
®rst laminate beam is fully covered, from the ®xed root to the free end, with a piezoelectric constraining
layer. On the other hand, the base beam of the second laminate beam is partially covered with a
piezoelectric patch of length 0.1016 m, starting at 0.027 m distance from the ®xed root. The widths of
the base beam, the piezoelectric layer, and the patch are all 0.0127 m. The piezoelectric layer or patch
has Young's modulus Ep=64.9 GPa, elastic sti�ness CD

11=74 GPa, piezoelectric constant d31=ÿ175 �
10ÿ12 m/V, and mass density rp=7600 kg/m3.

Tables 1 and 2 compare the natural frequencies obtained by SEM and FEM for the fully covered

Table 1

The natural frequencies obtained by SEM and FEM for the fully covered beam (n = total number of ®nite elements or spectral

elements)

Modes oSEM (Hz) oFEM (Hz)

n=1 n=10 n=20 n=50 n=100 n=150

1st 30.04 30.05 30.04 30.04 30.04 30.04

2nd 188.22 188.58 188.31 188.23 188.22 188.22

3rd 526.89 529.40 527.50 526.99 526.91 526.90

4th 1032.13 1041.56 1034.36 1032.48 1032.22 1032.17

5th 1705.41 1731.48 1711.36 1706.34 1705.65 1705.52

10th 6067.52 6463.04 6143.95 6078.60 6070.25 6068.73

15th 13063.72 15609.61 13449.38 13114.36 13075.96 13069.13

20th 22622.09 29135.45 23911.50 22774.05 22657.92 22637.84
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beam and the partially covered beam, respectively. In both tables, n indicates the total number of ®nite
elements or spectral elements used in the analysis. For spectral element analysis, the possible minimum
number of spectral elements is one for the fully covered beam and three for the partially covered beam,
as indicated in the tables. Both tables show that, as the total number of ®nite elements used in FEM is
increased, the natural frequencies by FEM gradually converge to the natural frequencies by SEM at all
natural frequencies. This may prove that SEM provides very accurate solutions with using only
minimum number of spectral elements. The validity and accuracy of the modal analysis method (MAM)
introduced in this paper is also veri®ed in Figs. 3 and 4. Fig. 3 shows the percent receptance error for
the axial motion of base beam and Fig. 4 for the bending motion, both for the fully covered beam. To
excite the cantilevered beam, as indicated in the ®gures, a point load is applied at the free end without
applying voltage. As expected, the receptance (the frequency response function de®ned by displacement/
force) obtained by MAM indeed gradually converges to that obtained by SEM as the total number of
normal modes considered in modal analysis is increased. The percent receptance errors for the axial
motion and bending motion show that the bending motion can be predicted more accurately at a
speci®ed total number of normal modes considered in modal analysis. Thus, in the present axial-bending

Table 2

The natural frequencies obtained by SEM and FEM for the partially covered beam (n= total number of ®nite elements or spectral

elements)

Modes oSEM (Hz) oFEM (Hz)

n=3 n=10 n=20 n=50 n=100 n=150

1st 32.94 32.95 32.95 32.94 32.94 32.94

2nd 165.32 165.41 165.34 165.32 165.32 165.32

3rd 482.43 483.09 482.58 482.46 482.44 482.44

4th 938.39 940.90 938.90 938.47 938.41 938.40

5th 1604.40 1612.86 1605.95 1604.62 1604.45 1604.42

10th 5797.62 5972.64 5826.75 5800.89 5798.38 5797.95

15th 12579.64 14790.15 12760.97 12596.13 12583.24 12581.20

20th 22421.84 30892.99 22620.96 22445.59 22427.65 22424.41

Fig. 3. Percent receptance error for the axial motion vs the total number of normal modes used in the modal analysis: SEM and

MAM represent the receptances obtained by spectral element method and modal analysis method, respectively.
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coupled problem, more normal modes summation is required for the axial motion to meet the speci®ed
solution accuracy.

Fig. 5 compares the receptances of bending motion obtained by SEM, FEM, and experiment. The
experimental data is cited from the work by Liao (1997). The natural frequencies predicted by SEM and
FEM are so close to each other within the frequency range of experiment by Liao (1997) that the
di�erence is not apparent in Fig. 5. However, as can be con®rmed from Table 2, the natural frequencies
predicted by FEM are always larger than those by SEM. This fact may conclude that SEM provides
more reliable dynamic characteristics of an elastic-piezoelectric two-layer beam than FEM.

Finally, the e�ects of thickness ratio (r=ha/hb) on the natural frequencies of the cantilevered laminate
beams are illustrated in Figs. 6 and 7 for the partially covered beam and for the fully covered beam,
respectively. Both ®gures clearly show that every natural frequency is getting smaller toward the
corresponding natural frequency of the base beam layer as the thickness ratio decreases. From Eq. (5), it
can be shown that the bending motion of the base beam layer should be completely decoupled from the
axial motion when the piezoelectric layer (or patch) thickness vanishes completely. Figs. 6 and 7 show

Fig. 4. Percent receptance error for the bending motion vs the total number of normal modes used in the modal analysis: SEM and

MAM represent the receptances obtained by spectral element method and modal analysis method, respectively.

Fig. 5. Comparison of the receptances of bending motion obtained by SEM, FEM, and experiment (Liao, 1997).
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that the natural frequencies at zero thickness ratio (marked by the square dots) are indeed identical to
the natural frequencies for the pure axial motion and pure bending motion of the base beam layer.

6. Concluding remarks

Accurate prediction of the dynamic characteristics of a piezoelectrically actuated beam is very
important for successful vibration or noise controls. It has been well recognized that spectral elements
provide very accurate solutions for such simple structures as beams. Thus, this paper introduces a
spectral element method (SEM) and a spectral-element based modal analysis method (MAM) for elastic-
piezoelectric two-layer beams.

First, the axial-bending coupled equations of motion are derived for the elastic-piezoelectric two-layer
beam by using Hamilton's principle. The spectral element is then formulated by using the exact
eigenfunctions spectrally formulated from the coupled governing equations of motion. The modal

Fig. 6. Thickness ratio dependence of the natural frequencies of the partially covered beam.

Fig. 7. Thickness ratio dependence of the natural frequencies of the fully covered beam.
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analysis approach for the present axial-bending coupled problem is also introduced by deriving the
orthogonality property of the exact eigenfunctions.

The validity and the accuracy of SEM and MAM introduced herein are veri®ed through some
illustrative examples. It is shown that the dynamic characteristics predicted by FEM and MAM
generally converge to the dynamic characteristics by SEM as the number of ®nite elements and normal
modes, respectively, is increased. Thus, due to the high accuracy of the spectral element formulated in
this paper, SEM may provide very reliable dynamic characteristics of the elastic-piezoelectric two-layer
beams.
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